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C H A P T E R  5

What Makes a Good Query? 
Prospects fo r  a Comprehensive Theory o f  Human 

Information Acquisition
Björn Meder, Vincenzo Crupi, and Jonathan D. Nelson

5.1 The Psychology o f Human Information Acquisition

Searching for relevant information to support learning and reasoning is 
central to intelligent and goal-directed behavior. Cognitive development is 
guided by children’s ability to actively acquire information about their 
physical and social environment. Doctors routinely perform tests to diag
nose their patients. And, o f course, scientists conduct experiments to test 
their theories and hypotheses.

Psychological research on how humans acquire information in a self
directed manner began in the wake of the cognitive revolution (Bruner 
et al., 1956; Mosher & Hornsby, 1966; Wason, I960). Many of these 
earlier studies were inspired by Poppers (1959) philosophy of science and 
his method of falsification: that from a logical point o f view scientific 
theories cannot be proven to be true, but they can be shown to be wrong if 
their predictions are inconsistent with the outcome of an experiment. 
Accordingly, queries (e.g., questions, tests, experiments) are only useful if 
they can yield data that could potentially falsify a hypothesis.

Adopting a logical framework and falsificationism as the normatively 
correct approach to information acquisition, psychologists devised empir
ical studies to find out whether people would intuitively seek out poten
tially disconfirming evidence. A prominent example is the selection task, in 
which participants can acquire information to test whether a conditional 
rule holds (Wason, 1968). Presented with four cards and a rule such as “If 
there is a vowel on one side of any card, then there is an even number on its 
other side,” searchers could turn over one or multiple cards to attempt to 
falsify the rule. Contrary to the prescriptions of a logico-deductive method, 
and paralleling findings from related tasks (Wason, 1960), few participants 
selected queries in accordance with a falsificationist strategy. In line with
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the emerging heuristics-and-biases program (Kahneman & Tversky, 
1974), Wason and others suggested that people’s hypothesis-testing strat
egies are prone to a “confirmation bias” and other suboptimalities 
(Klayman & Ha, 1987; Nelson & McKenzie, 2009; Nickerson, 1996).

Around the 1980s, psychologists started using a different theoretical 
framework for conceptualizing and evaluating human search, inspired by 
approaches developed in information theory (Shannon, 1948), philosophy 
of science (Good, 1950), statistics (Lindley, 1956), and decision theory 
(Savage, 1954). A key idea in this framework, foreshadowed by 
Chamberlin’s (1890) method of multiple working hypotheses, is that the 
goal of scientific information acquisition is to discriminate among multiple 
possible hypotheses, rather than to falsify a single hypothesis. Commonly 
referred to as the Optimal Experimental Design (OED) framework, query 
selection is conceptualized as probabilistic inductive inference, where the 
outcome of a query is used to revise beliefs about the considered hypoth
eses. Updating beliefs in light of new data provides a certain amount of 
information, with different ways of measuring this quantity in relation to 
a searcher’s beliefs and goals. These models have informed theory and 
empirical research on central issues in perception, developmental and 
cognitive psychology, and neuroscience.

Here, we discuss four key questions. First, how can we formalize the 
value of information and how do different models differ conceptually and 
mathematically? Second, how can these models support the theoretical and 
empirical analysis of human information acquisition? Third, what norma
tive and computational principles govern sequential search, and how can 
the tension between short- and long-run optimality inform research on 
people’s ability to conduct an efficient series of queries? Fourth, what are 
the relations between probabilistic (Bayesian) models of the value of 
information and heuristic approaches to information acquisition, and 
what insights can be gained from bridging different levels of analysis? We 
conclude by discussing current challenges and prospects for 
a comprehensive theory of human information search.

5.2 What Makes a Good Query?

How can we quantify the informational value of a query -  a verbal 
question, a medical test, an eye movement, or an experiment? Several 
models to address this issue have been proposed in different fields, 
including information theory, philosophy of science, statistics, and 
psychology. Placed within the broad OED framework, these models
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evaluate queries according to different conceptual ideas and correspond
ing measures, such as the expected reduction in uncertainty (Lindley, 
1936) or the expected improvement in classification accuracy (Baron, 
1985). The quantities underpinning OED models (e.g., entropy meas
ures) are widely used, including applications in ecology (Crupi, 2019; 
Simpson, 1949), economics (Gini, 1921), machine learning (Settles, 
2010), and physics (Beck, 2009). They also provide the foundation of 
active learning strategies used to adaptively sample high-dimensional 
search spaces, for instance in material sciences (Lookman et al., 2019), 
drug discovery (Murphy, 2011), or learning of protein interactions 
(Mohamed et al., 2010). How humans search large decision spaces has 
also been addressed in recent psychological research (Meder et al., 2021; 
Schulz et al., 2019; Wu et al., 2018).

In cognitive science, OED models serve as descriptive or normative 
models for assessing human information acquisition in different domains 
(for reviews, see Coenen et ah, 2019; Crupi et ah, 2018; Nelson, 2005; 
Gureckis &  Markant, 2012). Key applications include perceptual tasks 
(Najemnik & Geisler, 2005; Nelson & Cottrell, 2007), categorization 
(Markant & Gureckis, 2014; Nelson et ah, 2010), associative learning 
(Kruschke, 2008), causal induction (Bramley et al., 2015; Steyvers et ah, 
2003), and hypothesis testing (Austerweil & Griffiths, 2011; Crupi et ah, 
2009; Oaksford & Chater, 1994, 1996; Skov & Sherman, 1986). OED 
principles are also frequently used in developmental research (Kachergis 
et al., 2016; Nelson et ah, 2014; Ruggeri &  Lombrozo, 2015; Ruggeri 
et al., 2015) and neuroscience (Filimon et al., 2020; Nakamura, 2006). 
Applied issues include eye witness identification (Wells & Lindsay, 1980), 
medical diagnosis (Benish, 1999), reading (Legge et ah, 1997), and the 
design of psychological experiments (Myung &  Pitt, 2009).

5.3 Optimal Experimental Design (OED): Probabilistic Models
of the Value o f Information

OED models provide a formal account of the epistemic value of informa
tion and the usefulness of possible queries. Typically, OED models are 
defined solely in terms of the relevant probability model, and are therefore 
most adequate for situations where the goal of the searcher is purely 
epistemic. Accordingly, OED models provide informational (or epistemic) 
utility functions.

The general method for evaluating a query Q based on OED principles 
requires specifying the prior probabilities of the hypotheses, the likelihood
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of each query outcome given the hypotheses, and a measure of the epi
stemic utility of each outcome. For instance, the information value of 
a medical test (Benish, 1999) that can come out positive or negative is fully 
specified by the prior probabilities of the condition (e.g., prior probability 
of the disease, for instance derived from epidemiological data), and the 
likelihoods of a positive test given that the medical condition is present or 
absent, respectively. Other examples are classification tasks, where different 
features can be queried before making a prediction (Nelson et al., 2010), or 
visual search tasks, where eye movements must be directed toward inform
ative parts of a scene to find a target item (Najemnik & Geisler, 2005).

Based on the probability model, a preposterior analysis (Raiffa & 
Schlaifer, 1961) can be conducted, where the amount of obtained infor
mation is quantified by comparing the prior probability distribution over 
the hypotheses before asking query Q with the posterior distribution after 
asking Q and obtaining outcome qr  (Capital letters refer to random 
variables, such as a query Q, whose answer is not yet known. Lowercase 
variables refer to known values: for instance, q¿ is a specific obtained 
answer.) If a query Q has m possible answers, then its expected informa
tional utility, eu(Q), is the weighted average usefulness of its possible 
answers:

m

eu{Q) = ^2P{qj)u(q j) (l)
j =1

where Piqj) denotes the probability of observing outcome q, and u{qj) 
denotes its information value.

Figure 5.1 illustrates the basic rationale of determining queries’ infor
mation value using a search-and-classification task with a binary hypothesis 
space (species A vs. species B) and two binary features, the specimen’s “eye” 
and “claw” (Nelson et al., 2010). The probabilistic structure of the envir
onment is shown in Figure 5.1a — that is, the hypotheses’ prior probabil
ities, P(h¡), and the individual feature likelihoods P{qj \ h¡) (numbers from 
Wu et al., 2017, experiment 1). The goal is to classify the specimen as 
species A or B, after querying one of the two features (Figure 5.1b). Each 
query could yield two outcomes (feature values) with varying implications 
for the hypotheses’ posterior probabilities — that is, for each P{hi | qj). But 
how exactly can we use these quantities to determine the information value 
of the two queries?

Many different value-of-information models within the broad OED 
framework have been proposed for quantifying the value of queries. These
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Figure 5.1 A search-and-classification task with a binary hypothesis (species A vs. B) and two binary features (the specimens’ “eye” and 
“claw” feature, Nelson et al., 2010). a) Task structure, i.e., the hypotheses’ prior probabilities P(h¡), and the feature likelihoods, P(qj | h¡).

b) Information search task, where one o f the two features can be queried before making a classification decision. The tree shows the 
marginal probabilities o f the feature values, P(q¡), and the posterior probabilities o f the hypotheses given each feature value, P(h¡ | qj). c) 

Informational utilities o f outcomes, u(qj), and queries, eu(Q), according to information gain and probability gain. Information gain 
considers querying the claw feature more useful than querying the eye feature, eulQ^e) < eulQ ,.^), whereas probability gain considers the

eye feature more informative, eu(Qpj,c) > eu(Qclaw).
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models can make strongly diverging claims about the informational utility 
of a query (Nelson, 2005). Here, we briefly introduce some prominent 
entropy-based models of the value of information, which constitute the 
most widely used class of measures across different disciplines. 
Importantly, there are deep mathematical relationships among seemingly 
different models that allow them to be treated in a unified mathematical 
framework (Crupi et al., 2018; Sharma & Mittal, 1975).

5.4 Information Gain: Reducing Uncertainty

Information gain  (IG; Lindley, 1956) values queries in accordance with the 
expected reduction in uncertainty, where uncertainty is measured via 
Shannon (1948) entropy. The model contrasts the entropy in the hypoth
esis space before conducting a query with the expected entropy after the 
query, with the information value of a query being the expected amount of 
entropy reduction.

The Shannon entropy of a random variable H, entfH), corresponding to 
the true hypothesis (e.g., the species in Figure 5.1), is defined as

n 1
entShannon(H) ^  ^ / * ( / ; / )

where there are n possible hypotheses hx, b2, . . .  hn. (The choice of base of 
logarithm is arbitrary; we use log2 such that IG is measured in bits;
Figure 5.2a.) The corresponding informational utility of query outcome qj is

«i g (# )  =  ¿ p ( ^ ) log 2 p ^ y  ~  ¿ ^ W l o g 2 p ^ g y  (3)

where the first term corresponds to the prior entropy, ent{H), and the second 
term denotes the expected posterior entropy of H, given answer q¡.

Figure 5.1c shows the IG of the individual query outcomes, u{qj), and the 
expected informational utility of the two queries, eu(C¿ef) and eu iQ ^ f, 
given by the weighted average utility of the outcomes (Equation 1). 
According to IG, querying the claw feature is more useful than querying 
the eye feature, eu i f fy ^ -0.1 bits vs. <?z/(Qnw)=0.19 bits.

IG is probably the most widely used measure for quantifying uncertainty 
reduction in information acquisition. Applications in psychology range from 
hypothesis testing (Austerweil & Griffiths, 2011; Nelson et al., 2001; 
Oaksford & Chater, 1994, 1996) and causal induction (Bramley et al.,
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2015; Steyvers et al., 2003) to the analysis of eye movements (Legge et al., 
1997; Najemnik & Geisler, 2005; Nelson & Cottrell, 2007) and cognitive 
development (Nelson et al., 2014; Ruggeri et al., 2015).

5.5 Probability Gain: Reducing Prediction Error

Probability gain  (PG; Baron, 1985) measures improvement in classification 
accuracy. It can alternately be viewed as measuring a kind of information 
gain (see Crupi et al., 2018) in which error entropy (classification error), 
rather than Shannon entropy, is used to measure uncertainty. PG values 
answers in accordance with how much they improve the probability of 
making a correct prediction, assuming that if a searcher has to guess which 
hypothesis is correct (e.g., which disease is present or the species of 
a biological specimen) they will select the most likely hypothesis given all 
information obtained so far. The prediction error, 1 -  max P(h¡), provides 
the entropy function (Figure 5.2a):

entError(H) = 1 -  max P(h¿), (4)
1 < i < n

with the corresponding epistemic utility of a query outcome defined as

m Errori/}j)  maxj <i<n max P(h¿)
1 < t < n

(5)

In Figure 5.1, the probability of making a correct prediction before 
obtaining additional information is 70%, assuming one picks the most 
likely hypothesis (species A). According to PG, querying the eye feature is 
more useful than querying the claw feature, as the eye feature leads to 77% 
classification accuracy, e«(Qo,e)=0.07 (Figure 5.1c). In contrast, the claw 
feature does not improve on the initial 70% accuracy based on the prior 
probabilities alone, eu(Q^,e)=0. Thus, a reduction in uncertainty measured 
via Shannon entropy does not necessarily reduce prediction error.

PG has been widely used in psychology, including probabilistic 
multiple-cue categorization tasks (Nelson et al., 2010; Meder & 
Nelson, 2012; Wu et al., 2017), medical diagnostic test selection 
(Baron et ah, 1988), and reasoning in the pseudodiagnosticity paradigm 
(Crupi et al., 2009). This research has also revealed important con
straints on the ability o f OED models to predict human behavior,



108 M E D E R ,  C R U P I ,  A N D  N E L S O N

namely the ways in which probability information is conveyed. In 
experience-based category learning with hundreds of learning trials, 
PG provides a robust predictive model of human query selection, 
compared to several other models (Nelson et al., 2010). With other 
presentation formats, for instance when probabilities are communicated 
with words-and-numbers or using visualizations of frequency informa
tion, the proportion of people searching in accordance with probability 
gain varies strongly, being as low as about 20% and as high as about 
90% (Wu et ah, 2017; where chance would be 50%). Thus, the 
predictive power of OED models to account for behavior cannot be 
judged in isolation, but requires a precise characterization of the task 
circumstances, especially in relation to how environmental probabilities 
are conveyed.

5.6 A Unifying Framework for Entropy and the Value
of Information

5.6.1 The Sharma-Mittal-Space o f  Entropy Measures

Information gain and probability gain are two prominent measures of the 
epistemic utility of queries, with different entropies underpinning them. 
However, a variety of further entropy measures exist and are being used in 
different fields, including the measurement of species diversity in ecology 
(Keylock, 2005), genetic variability in evolutionary biology (Lewontin, 
1972), and applications in physics (Beck, 2009). Different entropies offer 
alternative ways to formalize the notion of uncertainty contained in 
a probability distribution, with distinct mathematical properties of interest 
for theory and application (Crupi & Tento ri, 2014; Nelson 2005)- 
Analogously to Shannon and error entropy, these measures give rise to 
different informational utility functions, with the value of queries valued in 
terms of their ability to reduce alternative forms of entropy (Crupi et al.,
2018).

One prominent model is Hartley (1928) entropy, which was an import
ant precursor in the development of Shannon’s seminal work:

entH*r„<y (H) =  l0g ¿  P { h if ■ (6)
/= 1

Hartley entropy computes the logarithm of the number of non- 
zero-probability hypotheses (assuming that 0°=0 and P{ht)°=\ for all
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P{h¡)>0; Figure 5.2a). A value-of-information model based on Hartley 
entropy resembles Popper’s (1959) method of falsification, as queries are 
valued by their ability to potentially rule out (falsify) at least one of the 
hypotheses considered. (Note though that ruling out any hypothesis — 
and not only the target hypothesis — would be equally valued in this 
information gain model.) If no outcome can potentially rule out 
a hypothesis, the query has no epistemic utility. This would be the case 
for the scenario in Figure 5.1, where no outcome yields certainty about 
the hypotheses.

Another important measure is quadratic entropy (Vajda & Zvárová, 
2007; also known as Gini- or Simpson-Gini index), formally defined as

=  (7)
i=  1

Quadratic entropy (Figure 5.2a) has been widely applied in many fields, 
including in economics to quantify income inequality (Gini, 1921) and in 
biology to measure species diversity (Patii & Taillie, 1982; Simpson, 
1949). It is also frequently used in machine learning (Settles, 2010).

Different entropy measures are based on diverse conceptual and math
ematical ideas about uncertainty and information. Notwithstanding these 
differences, several entropy measures arise as special cases in a unifying 
mathematical framework: the Sharma—Mittal space o f  entropies (SM; 
Sharma & Mittal, 1975; Crupi et al., 2018). The generalized SM- 
entropy measure has two parameters, the order parameter r and the degree 
parameter P.

entSM{H)
The family of Sharma—Mittal entropies contains several other entropy 

measures as special cases (many of which exist only for well-defined limits): 
Shannon entropy is recovered for r = t = 1, Hartley entropy for r = 0 and 
t= 1, Quadratic entropy for r = t = 1, and Error entropy for t = 2 and r~* °° 
(Figure 5.2b). The family of Rényi (1961) entropies is recovered for t  = 1, 
and the family of Tsallis (1988) entropies for r = t. Each of these entropy 
measures can be used to implement a corresponding model of the value of 
information that values query in accordance with the expected reduction of 
the chosen entropy.

* ~{±mi
i=  1

- I



En
tro

py
 

of 
bi

na
ry

 
va

ria
bl

e 
H

a) Shannon, Error, Hartley, and Quadratic Entropy b) Sharma-Mittal Space of Entropy Measures
Shannon entropy

Hartley entropy

Error entropy

Quadratic entropy

Probability of h

mm%m*O)CPo

*13 O 3E m **

G
au

ss
ia

n

*r✓

p y

Quadratic. /
\ gS  Error - »

.Hartley
s  Rényi«P ß

c  / i  
;s> / /
Ö /  /  
i /  /

"^Shannon

Effective number

0 2
Order r

Figure 5.2 Example o f entropy functions and the biparametric Sharma-Mittal family o f entropy (Crupi et al.» 2018). a) Examples o f four 
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In addition to providing a unified framework for quantifying entropy 
and uncertainty, the Sharma-Mittal framework offers prospects for cogni
tive modeling and empirical research. For instance, the logico-deductive 
interpretation of what constitutes rational information acquisition in 
Wason’s (1968) selection task can be recovered in the Sharma-Mittal 
framework by using the reduction of Hartley entropy as a measure of 
epistemic utility (Crupi et al., 2018). Such analyses help to bridge seem
ingly incommensurate perspectives and models in a unifying mathematical 
framework, thereby fostering theory integration and providing guidance 
for empirical studies.

5.7 Short- vs. Long-Run Optimality of OED Models

OED models assess the epistemic utility o f queries by considering each 
question’s potential outcomes and their immediate implications for the 
hypotheses. These models were originally envisaged for situations in which 
only a single query can be conducted and thus they are stepwise-optimal in 
the sense that they optimize a particular informational utility function in 
the next time step. Since they disregard any future queries that could be 
conducted, such methods are also known as myopic or greedy models.

However, in many situations multiple queries can be conducted, for 
instance in medical diagnosis. In such cases, it is critical to search efficiently 
for information — to obtain as much information as possible with as few 
queries as possible (e.g., because medical tests can have intrinsic harms and 
are costly). Are stepwise OED models optimal in the long run when 
multiple queries can be conducted? The answer to this question is in the 
negative: Stepwise-optimal methods can provide a reasonable and tractable 
account for specific scenarios (Meder et al., 2019; Nelson et al., 2018), but 
they do not generally identify the most efficient sequence of queries -  
which in fact is a computationally intractable problem (Hyafil & Rivest,
1976).

The fact that what is in some sense optimal for a one-shot search 
decision can be distinctly suboptimal when multiple queries can be con
ducted has important implications for the theoretical and empirical ana
lysis of human sequential search. For instance, stepwise models correspond 
to a valuation of individual queries, whereas planning a sequence of queries 
requires evaluating alternative search trees comprising multiple queries. 
However, in stark contrast to other domains such as reward-based learning 
(Bellman, 1957; Sutton & Barto, 1998), there is little research on the 
conflict between short- and long-term optimality and people’s ability to
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search efficiently in situations where stepwise methods are distinctly 
suboptimal.

An exception is Meier and Blair (2013), who used a probabilistic classifi
cation task with four hypotheses and three (binary) queries, where the most 
informative first query according to several stepwise methods was not the 
most efficient first query in the long run (Figure 5.3a). Searchers were able to 
identify the most efficient query, but often required dozens or hundreds of 
learning trials to consistently select the most efficient feature first. These 
results show that people can learn from experience to search efficiently and 
overcome the limitations of stepwise approaches. However, further research 
is needed to achieve a better understanding of the interplay between learning 
processes, normative constraints imposed by sequential search scenarios, and 
the cognitive processes underlying query selection when stepwise methods 
are suboptimal.

The limitations of stepwise methods also apply in simpler situations with 
uniform priors over the hypotheses and deterministic likelihoods. 
Figure 5.3b shows a sequential search scenario based on the twenty- 
questions game (Meder et al., 2019), an experimental paradigm widely 
used in developmental and cognitive psychology to investigate sequential 
search in children and adults. The goal is to identify a randomly chosen 
hypothesis (here: monster) by asking as few yes-no questions about its 
features as possible (e.g„ “Is the monster blue?”). Through a series of 
questions searchers move from a state of maximal uncertainty with equi- 
probable hypotheses to knowing the true hypothesis with certainty.

A common benchmark on this task is stepwise information gain 
(Kachergis et al., 2017; Nelson et al., 2014; Ruggeri et al., 2016, 2017)- 
However, selecting questions according to their maximal stepwise informa
tion gain does not necessarily entail conducting as few queries as possible. 
For instance, in the task environment shown in Figure 5.3b, the color and 
shape feature tie for the maximum information gain query, but starting 
with the color feature is more efficient in the long run, because it allows for 
more informative queries on subsequent steps (Meder et al., 2019). Thus, 
similar to Meier and Blair (2013), selecting queries in accordance with the 
highest stepwise expected reduction of Shannon entropy (as well as various 
other entropy models) fails to identify the most efficient first query. 
Interestingly, in this task both children and adults show very limited 
sensitivity to long-run considerations, with behavior better accounted for 
by stepwise models (Meder et al., 2019). One explanation is that learning 
from experience is required to search efficiently across multiple queries.
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Another possibility is the use of heuristic methods that may somehow 
correspond to stepwise OED models.

The fact that selecting queries in accordance with stepwise methods does 
not ensure long-run efficiency is a critical issue for both the theoretical and 
the empirical analysis of human information acquisition, because it entails 
that stepwise OED models do not generally provide adequate benchmarks 
for evaluating people’s search efficiency. While globally optimal solutions 
are generally unattainable due to the quickly increasing computational 
complexity, for smaller numbers of hypotheses and queries the most 
efficient search tree(s) can be determined through dynamic programming, 
such that empirical paradigms can be constructed that dissociate between 
short- and long-run efficiency (Meder et al., 2019; Nelson et al., 2018). 
Such paradigms also enable contrasting stepwise and multistep models of 
information acquisition, which can be more efficient because they plan 
multiple queries ahead (Nelson et al., 2018). To what extent multistep 
approaches can predict human sequential search is an important open 
question for developing a comprehensive theory of human sequential 
search.

5.8 From Heuristics to OED Models and Back

In cognitive science, OED models often serve as normative benchmarks 
that specify the problem faced by the searcher and the quantities required 
to solve the task from a computational point of view. Descriptively, OED 
models are able to predict human behavior well on a wide range of tasks, 
raising questions about the nature of the cognitive processes underlying 
query selection. It could be that the brain indeed carries out the relevant 
computations without searchers being consciously aware of these processes 
(e.g., in visual search tasks that recruit a dedicated neural machinery), but 
typically OED methods are considered computational-level models of 
behavior which provide a “rational description” rather than a “rational 
calculation” (Chater et al., 2003).

One promising approach to bridge different levels of analysis is to 
consider heuristic strategies that choose queries without resorting to the 
explicit calculation of the quantities underpinning OED models. In 
psychology, the use of heuristics is often assumed to lead to systematic 
errors in thinking and reasoning (Tversky & Kahneman, 1974). In 
a similar vein, it has frequently been argued that human search behavior 
does not conform to (supposedly) normative principles and suffers from 
a “confirmation bias” or other peculiarities. However, research has also
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revealed that the performance of heuristics can be on par with more 
computationally heavy models and sometimes even outperform them 
(Gigerenzer & Gaissmaier, 2011). A similar picture has emerged in the 
psychology of human inquiry, where intriguing connections between 
OED models and simple heuristics for query selection have been 
identified.

Consider the split-half heuristic (Navarro &  Perfors, 2011; Nelson et al., 
2014), which is applicable in the twenty-questions game (Figure 3b). This 
strategy does not rely on explicitly computing entropy, but rather evaluates 
queries in accordance with how they split the current set of hypotheses 
(items). According to the split-half heuristic, the closer a query comes to 
inducing a 50:50 split, the more informative it is. In Figure 3b, color and 
shape would be considered the most informative queries, as they induce 
a more even split (3:9) than the pattern feature (2:10) or querying individ
ual monsters (1:11). Several papers have reported that human searchers 
frequently rely on this strategy, with the propensity to select features in 
accordance with the evenness of the induced split increasing with age (e.g., 
Denney & Denney, 1973; Mosher & Hornsby, 1966; Siegler, 1977).

How does the split-half heuristic relate to OED theories? It turns out 
that in the twenty-questions game the stepwise information gain of a query 
is a direct function of the induced split: The closer the split comes to 50:50, 
the higher the information gain of the query (Figure 5.3c). Thus, a searcher 
using the split-half heuristic will invariably select questions in accordance 
with their information gain. The analytic relation between the inform
ativeness of a query and induced split also holds for several other entropy 
measures (Crupi et al., 2018) and particular nonentropic OED models 
(Nelson et al., 2018).

Another heuristic is the likelihood difference heuristic (Nelson, 2005; 
Nelson et al., 2020), which is sometimes used in binary classification 
tasks when probability information is conveyed through words and num
bers (Slowiaczek et al., 1992). The heuristic is applicable in probabilistic 
search tasks with binary hypotheses and features, and values queries in 
accordance with the absolute difference in outcome likelihoods. Ranking 
queries in accordance with their likelihood difference corresponds to 
ranking queries in accordance with the OED model impact (Wells & 
Lindsay, 1980), which for the special case of equal priors also corresponds 
to ranking queries according to probability gain (Nelson, 2005). In par
ticular circumstances the likelihood difference heuristic is provably opti
mal for selecting queries, whereas several OED models are not (Nelson 
et al., 2020).
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5.9 Concluding Remarks: Open Questions and Challenges

Recent years have seen strong progress in building a comprehensive com
putational account of human inquiry based on applying OED principles to 
the theoretical and empirical analysis of cognition and behavior. What 
challenges need to be met to further advance theory, and what are import
ant venues for empirical research?

One important issue concerns the relation between informational utilities 
and other kinds of reward structures. For instance, in medical diagnosis the 
information provided by a test is of course essential, but further costs and 
rewards are also highly relevant (Baron & Hershey, 1988; Nelson et al., 
2020). This is because tests themselves can be intrinsically harmful (e.g., 
radiation) or because their outcomes have strong implications for subsequent 
actions (e.g., erroneously failing to quarantine an infectious person due to 
a false test result). While OED models evaluate queries in terms of their 
epistemic value, the general approach can be extended to incorporate situ
ation-specific utilities (e.g., rewards and costs associated with decisions based 
upon obtained information). In this case, queries can be valued in accord
ance with their expected utility gain , rather than pure information value 
(Markant & Gureckis, 2012; Meder & Nelson, 2012). Incorporating other 
rewards and costs in the analysis of query selection might require invoking 
additional methods and considerations (Sharot & Sunstein, 2020). For 
instance, a doctor may need to choose between a highly informative test 
whose results may take several days to obtain, and a less informative test 
whose results are immediately available. Investigating how searchers balance 
information value and time (i.e., temporal discounting) and how they 
integrate other factors (e.g., hedonic value of query outcomes and other 
emotions related to the anticipation of information; Li et al., 2020) are 
important challenges for a broader characterization of information 
acquisition when searchers’ goals are not purely epistemic.

A promising venue for applying the Sharma-Mittal framework to such 
questions is deliberate ignorance -  the observation that people sometimes 
prefer to remain in a state of uncertainty rather than seeking out information 
that would resolve it (Hertwig & Engel, 2016). People may not want to know 
the sex of their child before birth or prefer to not know whether they have 
a genetic predisposition for a disease. Such behaviors raise interesting ques
tions for theories of human inquiry, because OED models based on entropy 
reduction are usually strictly nonnegative, meaning that in the expectation 
a query can never have negative epistemic utility. The Sharma-Mittal frame
work, however, has the expressive power to devise models where queries can
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have negative information value, depending on which entropy measure is 
chosen to represent uncertainty and information (Crupi et al., 2018). Thus, 
the framework provides novel pathways to model situations where searchers 
consider information as contrary to their goals even in strictly informational 
terms and without introducing situation-specific costs.

Another key issue is the interplay between reinforcement learning and 
human inquiry. This is of particular importance in light of empirical 
findings showing that searchers can harness their learning experiences to 
overcome the limitations of stepwise methods (Meier & Blair, 2013), 
whereas absent such experiences behavior is better accounted for by stepwise 
models (Meder et al., 2019). Similarly, OED models provide a much better 
account of human behavior when learning environmental probabilities 
through experience, compared to other means of conveying probability 
information (Meder & Nelson, 2012; Nelson et al., 2010, Wu et al., 
2017). Within the reinforcement learning framework (Sutton & Barto, 
1998), inquiry could be modeled by using informational utilities as reward 
functions, extending the approach from reward-based to information-based 
reinforcement learning (Li et al., 2019). Importandy, the reinforcement 
learning framework offers different proposals to address the tension between 
short- and long-run optimality by assuming that future outcomes are 
temporally discounted. Stepwise OED methods could be implemented by 
setting the temporal discounting parameter to zero, such that only the 
immediate implications of query outcomes are considered. Multistep models 
with a longer planning horizon could be implemented by increasing the 
temporal discounting factor, in which case later inquiry steps are also 
considered (Butko & Movellan, 2010). Integrating ideas and models from 
the OED and reinforcement learning literature would offer new perspectives 
on the learning processes and how they are constrained by OED principles.

Besides these pathways for future research, several open questions about 
the psychology of human inquiry and OED models exist (Coenen et al., 
2019). For instance, whereas OED models require a well-defined hypoth
esis space and probability model, many forms of human inquiry are more 
open ended in that the goal is not to discriminate between existing 
hypotheses, but to generate hypotheses in the first place, often in the 
absence of explicit learning goals or situation-specific incentives (e.g., self- 
guided inquiry in childhood or science). While the broad goal in such cases 
may also be epistemic in the sense of reducing uncertainty about the world 
more generally, fully accounting for such forms of open-ended inquiry 
might require integrating OED methods with other frameworks, such as 
theories of curiosity (Dubey & Griffiths, 2020). Conversely, applying
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OED methods can be challenging in practice — for instance, in scientific 
experimentation, when the goal is to discriminate among complex models 
with free parameters and the data-generating distribution is unknown 
(Kleinegesse & Gutmann, 2020).

In sum, OED theories provide a computational framework for evaluating 
the informational value of different kinds of queries, including verbal ques
tions, eye movements, medical tests, and experiments. Recent decades have 
yielded substantial progress in the understanding of the computational and 
behavioral principles underlying human information acquisition in different 
domains, from neuroscience to developmental and cognitive psychology. 
Notwithstanding these advances and breadth of applicability, many open 
questions remain, and addressing these challenges will be key to making further 
progress toward a comprehensive theory of human information acquisition.
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